Methods and Algorithms for Gene Prediction

Chaochun Wei 韦朝春 Sc.D.
ccwei@sjtu.edu.cn
http://cbb.sjtu.edu.cn/~ccwei

Shanghai Jiao Tong University
Shanghai Center for Bioinformation Technology

5/12/2011 K-J-C Bioinformatics Training Course
Outline

1. Introduction
2. Gene prediction methods
 - Gene prediction methods
 - HMM
 - TWINSCAN and N-SCAN
 - Using ESTs for gene prediction
 - Resources
 - Latest progress
3. Gene Prediction FAQs
1. Introduction: DNA

- DNA contains genetic information.
- DNA can be expressed as a sequence of letters A,C,G and T.
 Eg: ACGTTTTCGAGGT
DNA → RNA → Protein

Transcription & processing

Translation

Protein
RNA Processing

Primary mRNA

5’

UTR

(3’ poly(A) tail)

Splicing

β-Globin mRNA

1 31 105 147

(A)ₙ
Introduction: Gene Structure

A gene is a highly structured region of DNA, it is a functional unit of inheritance.
Patterns in Splice Sites

Donor Sites

Acceptor Sites

Sequence data from RefSeq of human, mouse, rat and chicken.

A Typical Human Gene Structure
Genes in a Genome
In a Mammalian Genome

- Finding all the genes is hard
 - Mammalian genomes are large
 - 8,000 km of 10pt type
 - Only about 1% protein coding
DNA, mRNA, cDNA and EST

- EST:
 - Short (~650bs)
 - High error rate (~1-5%)
 - Contains only UTRs or coding regions
The Challenge and Opportunity

- ~3000 genomes
 - 222 animals
 - 93 plants

Better Gene Structure Annotation

2. Gene Prediction Method History

<table>
<thead>
<tr>
<th>Generation</th>
<th>Date</th>
<th>Feature</th>
<th>Systems</th>
<th>Information or Methods used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup></td>
<td>Early 1980s</td>
<td>Approximate ends of protein coding regions and non-coding regions</td>
<td>TestCode, Fickett 1982
GRAIL, Uberbacher and Mural 1991
splice sites
promoters
Codon usage bias
Neuro-network methods</td>
<td>+
Translation start sites
Stop sites
Method: HMM</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>Early 1990s</td>
<td>A complete single gene in a short sequence</td>
<td>GeneID, Guigo et al. 1992
GeneParser, Snyder and Stormo 1993
FGENSH, Solovyev et al. 1994</td>
<td>+
Translation start sites
Stop sites
Method: HMM</td>
</tr>
<tr>
<td>3<sup>rd</sup></td>
<td>Mid-1990s</td>
<td>Multiple complete or partial genes in a long sequence</td>
<td>Genscan, Burge and Karlin, 1997</td>
<td>UTR
Method: Generalized HMM</td>
</tr>
<tr>
<td>4<sup>th</sup></td>
<td>2000s</td>
<td>Complete gene structures in whole genomes</td>
<td>Twinscan, Korf, et al. 2001
N-SCAN, Brown, et al. 2006
Twinscan_EST, N-SCAN_EST, Wei and Brent, 2006</td>
<td>Multiple-genomes
Transcript products
Method: Generalized HMM
Bayesian approach</td>
</tr>
</tbody>
</table>
Gene Prediction Methods (1)

- Categorization: by input information
 1. Ab initio methods
 - Only need genomic sequences as input
 - GENSCAN (Burge 1997; Burge and Karlin 1997)
 - GeneFinder (Green, unpublished)
 - Fgenesh (Solovyev and Salamov 1997)
 - Can predict novel genes
 2. Transcript-alignment-based methods
 - Use cDNA, mRNA or Protein similarity as major clues
 - ENSEMBL (Birney, Clamp, et. al. 2004)
 - Highly accurate
 - Can only find genes with transcript evidences
 - cDNA coverage 50-60%
 - + EST coverage up to 85%
Gene Prediction Methods (2)

- Categorization: by input information
 3. Hybrid Methods
 - Integrate cDNA, mRNA, protein and EST alignments into ab initio methods
 - Genie (Kulp, Haussler et al. 1996)
 - Fgenesh+ (Solovyev and Salamov 1997)
 - Genomescan (Yeh, Lim et al. 2001)
 - GAZE (Howe, Chothiea et al. 2002)
 - AUGUSTUS+ (Stanke, Schoffmann et al. 2006)
Gene Prediction Methods (3)

- Comparative-Genomics-Based Methods
 - TWINSCAN and N-SCAN
 - De novo
 - Assumption:
 - Coding regions are more conserved.
 - No transcript similarity information (like EST, cDNA, mRNA, or protein) is used
 - TWINSCAN-EST and N-SCANESTAMP
 - Hybrid
 - Use EST to improve prediction accuracy
TWINSCAN: A Novel Gene Prediction System Using Dual Genomes

Conservation sequences represent the conservation patterns between two genomes.
No transcript similarity information (like EST, cDNA, mRNA, and protein) is used.
Hidden Markov Model:

Model behind gene predictors

HMM for two biased coins flipping

\[e_1(H) = 0.8, e_1(T) = 0.2, e_2(H) = 0.3, e_2(T) = 0.7 \]

\[\pi^* = \arg \max_{\pi} P(x, \pi) \]
Most Probable Path and Viterbi Algorithm

Let \(f_l(i) = \max_{\{\pi_0, \ldots, \pi_{i-1}\}} (\Pr(x_0, \ldots, x_{i-1}, \pi_0, \ldots, \pi_{i-1}, \pi_i = l)) \)

Recursion (i=1…L)

\[
\begin{align*}
 f_l(i) &= e_l(x_i) \max_k (f_k(i-1)a_{kl}); \\
 ptr_i(l) &= \arg \max_k (f_k(i-1)a_{kl}).
\end{align*}
\]

Time complexity \(O(N^2L) \)
Space complexity \(O(NL) \)
Probability of All the Possible Paths and Forward Algorithm

Let \(f_l(i) = \Pr(x_0, \ldots, x_{i-1}, \pi_i = l) \)

Recursion (\(i=1\ldots L\))

\[
f_l(i) = e_l(x_i) \sum_k (f_k(i-1)a_{kl})
\]

Probability of all the probable paths

\[
P(x) = \sum_{\pi} P(x, \pi) = \sum_k f_k(L)
\]
Posterior Probability and Forward and Backward Algorithm

Posterior Probability

\[P(\pi_i = k \mid x) = \frac{P(\pi_i = k, x)}{P(x)} \]
Posterior Probability and Forward and Backward Algorithm

Let

Recursion (i=L-1,...,1)

Posterior Probability
TWINS CAN Model

- Generalized HMM
- Each feature in a gene structure corresponds to one state.
- State-specific length models.
- State-specific sequence models
- Use Conservation information
Conservation Sequence

Generated by projecting local alignments to the target sequence

human \text{CTAGAGATGC\ldots}\text{AGAAAGAAACAGGTACCGCAGTGC}\ldots\text{CCC}

\begin{align*}
\text{mouse} & \text{CTAGAG}\ldots\text{GTA\ldotsAGGGCTCTCCT}
\end{align*}

- Pair each nucleotide of the target with
 - “|” if it is aligned and identical
 - “:” if it is aligned to mismatch
 - “.” if it is unaligned
N-SCAN: A Novel Gene Prediction System Using Multiple Genomes

- Uses Bayesian model to include phylogenetic tree information
- Predicts introns in 5’UTR
- Has Conserved non-coding regions

(Brown, Gross and Brent, Genome Res. 2005)
Using ESTs for Gene Prediction: TWINSCAN_EST

- Integrating EST alignment information into TWINSCAN to improve its accuracy where EST evidence exits and not to compromise its ability to predict novel genes.
Sequence Representation of EST Alignments

1. Use EST-to-genome alignment programs
 - BLAT (Kent 2002)

2. Project the top alignment for each EST to the target genomic sequence
Accuracy Measurement

- Annotated data sets for training/testing
 - RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/)
 - CCDS (http://www.ncbi.nlm.nih.gov/CCDS/)

- Accuracy in different levels
 - Nucleotide level
 - Exon level
 - Gene level
 - Transcript level

- Sensitivity and specificity
Accuracy Measurement (continue)

Annotation Prediction

Correct Prediction

\[Sensitivity = \frac{Correct _ Prediction}{Total _ Annotation} \]

\[Specificity = \frac{Correct _ Prediction}{Total _ Prediction} \]
TWINSSCAN_EST and N-SCAN_EST on the Whole Human Genome

![Graph showing comparison of gene and exon sensitivity and specificity between TWINSSCAN2.03, TWINSSCAN_EST, N-SCAN, and N-SCAN_EST. Each category includes a bar chart with percentages.]

- **Exact Gene Sensitivity:**
 - TWINSSCAN2.03: 24%
 - TWINSSCAN_EST: 34%
 - N-SCAN: 44%

- **Exact Gene Specificity:**
 - TWINSCAN2.03: 14%
 - TWINSSCAN_EST: 17%
 - N-SCAN: 22%
 - N-SCAN_EST: 23%

- **Exact Exon Sensitivity:**
 - TWINSSCAN2.03: 67%
 - TWINSSCAN_EST: 81%
 - N-SCAN: 85%
 - N-SCAN_EST: 88%

- **Exact Exon Specificity:**
 - TWINSSCAN2.03: 56%
 - TWINSSCAN_EST: 58%
 - N-SCAN: 59%
 - N-SCAN_EST: 60%
An Example of N-SCAN_EST Prediction

(Hg17, chr21:33,459,500-33,465,411)
An Example of N-SCAN_EST Prediction
Experimental Validation of Predictions

A

N-SCAN Predictions → EXONiPHY Predictions → TRANSMap Predictions

Selection of novel targets

Primer design

RT-PCR & sequencing

Alignment to genome and validation

Valid RSTs

Analysis of novel exons & NGFs

MGC full-length cloning

B

N-SCAN

EXONiPHY

TRANSMap

Known Genes

ESTs/mRNAs

PCR Primers & RSTs

cDNA Clusters

Novel Gene Fragments

Siepel, Genome Research, 2007
Experimental Validation of Predictions

- See
 - The MGC Project Team, “The Completion of the Mammalian Gene Collection (MGC)”, Genome Research, 2009, 19:2324-2333
 - Tenney, A. E. et al., “Gene prediction and verification in a compact genome with numerous small introns”, Genome Research, 2004
N-SCAN/TWINSCAN Webserver:
http://mblab.wustl.edu/nsan/submit
Resources for Gene Prediction

- Sequence data sets
 - Nucleotide Sequences (NCBI)
 - dbEST
 - mRNA
 - cDNA

- Annotations
 - RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/)
 - CCDS (http://www.ncbi.nlm.nih.gov/CCDS/)

- Genome Browser
 - UCSC Genome Browser(http://genome.ucsc.edu/)
Latest Progress in Gene Prediction

New Methods

- **Conrad**: gene prediction using conditional random fields.
 Decaprio et al., *Genome Res.* 2007 Sep;17(9):1389-98.
 - Not working for vertebrate genomes

- **SVM** for splice site

- **CONTRAST**: Gross et al., *Genome Biology* 2007, 8:R269
 - Best *de novo* gene predictor for human (gene level accuracy ~50%)
 - Used SVM and conditional random field
3. Gene Prediction FAQs (from Ian Korf)

- **Algorithms vs. experts**
 - Q: are expert biologists better than computer programs?
 - A: Yes and no.

- **Next-generation sequencing**
 - Q: Will next-gen transcript sequencing replace gene prediction?
 - A: No. Rare transcripts may require directed experiments to validate.

- **Prediction accuracy**
 - Q: Why are gene prediction programs inaccurate?
 - A: We don’t always know why.
Gene Prediction FAQs (continue)

- Genes in my favorite genome...
 - Q: There is no gene predictor for it, what should I do?
Gene prediction for algal genomes

Macroalgae

Microalgae
A Typical Alga Gene Structure

A Typical Human Gene Structure
Gene Prediction FAQs (continue)

- Genes in my favorite genome...
 - Q: There is no gene predictor for it, what should I do?
 - A: Training a gene predictor or use one that is for another organism that is close to this genome. But it may be inaccurate.

- Difficult genes
 - Q: why some genes are not predicted by any program?
 - A: They are statistical outliers.
Gene Prediction FAQs (continue)

- Just coding exons…
 - Q: why other parts are not predicted, such as non-coding exons, alternative isoforms, non-canonical splice sites, gene within genes?
 - A: There are trade offs.

- Pseudogenes
 - Q: why do some gene predictions have tiny introns?
 - A: Retro-pseudo genes often have very strong coding signals, because they are derived from highly expressed genes.
Gene Prediction FAQs (end)

- How can I tell a good gene prediction from a bad one?
- Scores have been assigned to every exon and intron of a gene. People can tell if a gene prediction is good or not by the scores of exons and introns of this gene. You may have to run the program on your own computer to figure them out!
Acknowledgement

- Training program organizers
- Former lab members (WashU)
 - Dr. Michael Brent
 - Dr. Paul Fliceck
 - Dr. Ian Korf
 - Samuel Gross